131 research outputs found

    Role of Indian ordnance factories in the development and manufacture of some of the important cast and wrought aluminium alloys during the last three decades

    Get PDF
    NON-FERROUS alloys are generally those, wherein principal constituents. But it is not always the fact that non-ferrous alloys should be absolutely free from iron. There are many cases, where iron is purposely added, to develop certain beneficial properties while in some, the presence of this element is carefully eliminated to produce some sort of non-magnetic property

    Acknowledging Stress in Undergraduate Medical Education and Methods of Overcoming it

    Get PDF
    Abstract: Medical education is very demanding and stressful. Medical undergraduates face social, emotional and physical problems due to stress which affect their learning ability, academic performance and patient care. When students look at their education as a challenge, stress can bring them a sense of competence and increased capacity to learn but when education is seen as a threat, such stress can elicit feelings of helplessness. Each year of medical education is characterized having unique stress. Hence, present study was undertaken to examine coping strategies of first and second year medical undergraduates and to suggest different methods to attenuate them. The prospective data was collected from first and second year medical undergraduates enrolled at MGM Medical College, Kamothe Navi Mumbai, by using prevalidated questionnaire. The questionnaire probed to find out emotional maturity , problem solving ability, guidance needed for the career planning, problems related to health due to stress, availability of nutritious food and time for grooming as well as coping strategies in various situations. Data analysis was done by using Likert scale (1-4 points) and results were tabulated in the form of percentage. The cause of stress observed among medical undergraduates was academic, financial as well as emotional and their coping strategies were poor. Hence it is suggested to take corrective measures at various levels like institutional level, students' level as well as parents should be concealed to develop and inculcate adaptive coping skills in medical undergraduates

    On Delays in Management Frameworks: Metrics, Models and Analysis

    Full text link
    Management performance evaluation means assessment of scalability, complexity, accuracy, throughput, delays and resources consumptions. In this paper, we focus on the evaluation of management frameworks delays through a set of specific metrics. We investigate the statistical properties of these metrics when the number of management nodes increases. We show that management delays measured at the application level are statistically modeled by distributions with heavy tails, especially the Weibull distribution. Given that delays can substantially degrade the capacity of management algorithms to react and resolve problems it is useful to get a finer model to describe them.We suggest theWeibull distribution as a model of delays for the analysis and simulations of such algorithms

    A Mathematical Model of Liver Cell Aggregation In Vitro

    Get PDF
    The behavior of mammalian cells within three-dimensional structures is an area of intense biological research and underpins the efforts of tissue engineers to regenerate human tissues for clinical applications. In the particular case of hepatocytes (liver cells), the formation of spheroidal multicellular aggregates has been shown to improve cell viability and functionality compared to traditional monolayer culture techniques. We propose a simple mathematical model for the early stages of this aggregation process, when cell clusters form on the surface of the extracellular matrix (ECM) layer on which they are seeded. We focus on interactions between the cells and the viscoelastic ECM substrate. Governing equations for the cells, culture medium, and ECM are derived using the principles of mass and momentum balance. The model is then reduced to a system of four partial differential equations, which are investigated analytically and numerically. The model predicts that provided cells are seeded at a suitable density, aggregates with clearly defined boundaries and a spatially uniform cell density on the interior will form. While the mechanical properties of the ECM do not appear to have a significant effect, strong cell-ECM interactions can inhibit, or possibly prevent, the formation of aggregates. The paper concludes with a discussion of our key findings and suggestions for future work

    Modeling Cell Gradient Sensing and Migration in Competing Chemoattractant Fields

    Get PDF
    Directed cell migration mediates physiological and pathological processes. In particular, immune cell trafficking in tissues is crucial for inducing immune responses and is coordinated by multiple environmental cues such as chemoattractant gradients. Although the chemotaxis mechanism has been extensively studied, how cells integrate multiple chemotactic signals for effective trafficking and positioning in tissues is not clearly defined. Results from previous neutrophil chemotaxis experiments and modeling studies suggested that ligand-induced homologous receptor desensitization may provide an important mechanism for cell migration in competing chemoattractant gradients. However, the previous mathematical model is oversimplified to cell gradient sensing in one-dimensional (1-D) environment. To better understand the receptor desensitization mechanism for chemotactic navigation, we further developed the model to test the role of homologous receptor desensitization in regulating both cell gradient sensing and migration in different configurations of chemoattractant fields in two-dimension (2-D). Our results show that cells expressing normal desensitizable receptors preferentially orient and migrate toward the distant gradient in the presence of a second local competing gradient, which are consistent with the experimentally observed preferential migration of cells toward the distant attractant source and confirm the requirement of receptor desensitization for such migratory behaviors. Furthermore, our results are in qualitative agreement with the experimentally observed cell migration patterns in different configurations of competing chemoattractant fields

    3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes

    Get PDF
    Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and signaling pathways in vitro

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    • …
    corecore